
WebAgent: Automatic 
Generation of a 
Conversational Agent from 
Web Instructions

Sam Masling, Michael Du, Nancy Xu



Quick recap

● Project Context
● Semantic Parser
● CSS-Selectors ML Model
● End-to-end Web Agent System
● Evaluate Web Agent System



Related works



Mapping natural language commands to 
web elements

● By Panupong Pasupat Tian-Shun Jiang Evan Zheran Liu Kelvin Guu Percy Liang at 
Stanford

● Compiled 50,000 natural language commands from 10,000 datasets using AMT
● Three models: Retrieval based, embedding based, and alignment based
● Evaluated all three models on ability to match command to target element given 

the DOM of a website



Mapping natural language commands to 
web elements



Retrieval based

● Bag of words approach
○ Tokenize the text content of elements, as well as the attributes of the element, such as 

class name, id, color, etc
● Use commands as a search query, and return element with highest TF-IDF 

score



Embedding based

● For commands, utilize glove vectors to compute average over the 
tokenized commands

● For elements, embed properties such as text content, text attributes, string 
attributes, and visual attributes

● Compute a score based on concatenating the command embedding and 
the element embedding and passing it through a linear layer



Alignment based model

● Expanded on the use of embeddings by creating an alignment matrix, 
constructed by taking the pairwise dot product of element tokens and 
command tokens.

● Limited the element tokens to 10
● Used a combination of convolutional layers and linear layers to compute a 

score



Mapping natural language commands to 
web elements



Other works on element embeddings

● Screen2Vec
○ Self-supervised using hierarchical and text features

● Erica: Interaction mining mobile apps
○ Unsupervised learning to cluster visually similar elements 



SuperAgent: A customer service chatbot for 
e-commerce websites

● Broke down chatbot into 3 engines
○ Product Information
○ Question answering
○ Customer Reviews

● The three engines are run in parallel on the scraped 
webdata, and the response with the highest score is 
returned



Product information

● Stored as set of knowledge triples ⟨product name, attribute name, attribute 
value⟩

● Task boils down to attribute matching from a given query, which is 
performed by using a Deep Semantic Similarity Model (DSSM).



Question answering: FAQs

● For a given query q, create a set of n pairs {q, p_i} where n is the number of 
available FAQs. 

● Trained a regression forest model using the features: DSSM Model, word 
embedding compositions, n-grams, subsequence overlaps, PairingWords, 
and mover’s distance 

● Return the answer from the FAQ most similar according to the regression 
model



Customer reviews

● Used opinion mining techniques to retrieve information from customer 
reviews

● For a given query, outputs customer reviews based on a three step pipeline
○ Candidate retrieval using Lucene
○ Candidate ranking with a regression model
○ Candidate triggering which decides whether a candidate is strong enough to output



FreeDOM: A transferrable neural architecture for 
structured information extraction on web documents

● Creates a generalizable architecture for extracting information for 
websites without extensive hand-crafted datasets

● Existing websites required hand annotations for each website that they 
were evaluating on

● Introduces concept of a detail page which describes the general format of 
a product page ie, a movie page on IMDB, a product page on Amazon, a 
show page on Netflix etc 



Pipeline

● Two stage
○ Stage one learns dense representation 

for each DOM element using both 
markup and textual content

○ Stage two infers further context for 
these representations by incorporating 
information from further points in the 
DOM



Results


