WebAgent: Automatic Generation of a Conversational Agent from Web Instructions

Quick recap

- Project Context
- Semantic Parser
- CSS-Selectors ML Model
- End-to-end Web Agent System
- Evaluate Web Agent System

Related works

Mapping natural language commands to web elements

- By Panupong Pasupat Tian-Shun Jiang Evan Zheran Liu Kelvin Guu Percy Liang at Stanford
- Compiled 50,000 natural language commands from 10,000 datasets using AMT
- Three models: Retrieval based, embedding based, and alignment based
- Evaluated all three models on ability to match command to target element given the DOM of a website

Mapping natural language commands to web elements

Phenomenon	Description	Example	Amount	
substring match	The command contains only a substring of the element's text (after stemming).	"view internships with energy.gov" → "Careers & Internship" link	7.0 %	
paraphrase	The command paraphrases the element's text.	"click sign in" → "Login" link	15.5 %	
goal description	The command describes an action or asks a question.	"change language" → a clickable box with text "English"	18.0 %	
summarization	The command summarizes the text in the element.	"go to the article about the bengals trade" → the article title link	1.5 %	
element description	The command describes a property of the element.	"click blue button"	2.0 %	
relational reasoning	The command requires reasoning with another element or its surrounding context.	"show cookies info" → "More Info" in the cookies warning bar, not in the news section	2.5 %	
ordinal reasoning	The command uses an ordinal.	"click on the first article"	3.5 %	
spatial reasoning	The command describes the element's position.	"click the three slashes at the top left of the page"	2.0 %	
image target	The target is an image (no text).	"select the favorites button"	11.5 %	
form input target	The target is an input (text box, check box, drop-down list, etc.).	"in the search bar, type testing"	6.5 %	

Table 1: Phenomena present in the commands in the dataset. Each example can have multiple phenomena.

Retrieval based

- Bag of words approach
 - Tokenize the text content of elements, as well as the attributes of the element, such as class name, id, color, etc
- Use commands as a search query, and return element with highest TF-IDF score

Embedding based

- For commands, utilize glove vectors to compute average over the tokenized commands
- For elements, embed properties such as text content, text attributes, string attributes, and visual attributes
- Compute a score based on concatenating the command embedding and the element embedding and passing it through a linear layer

Alignment based model

- Expanded on the use of embeddings by creating an alignment matrix, constructed by taking the pairwise dot product of element tokens and command tokens.
- Limited the element tokens to 10
- Used a combination of convolutional layers and linear layers to compute a score

Mapping natural language commands to web elements

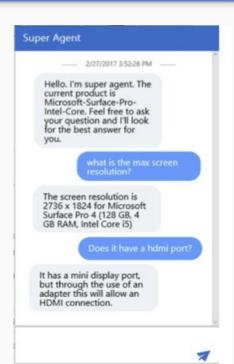
Model	Accuracy (%) 36.55		
retrieval			
embedding	56.05		
no texts	23.62		
no attributes	55.43 58.87		
no spatial context			
alignment	50.74		
no texts	15.94		
no attributes	48.51		
no spatial context	50.66		

Other works on element embeddings

- Screen2Vec
 - Self-supervised using hierarchical and text features
- Erica: Interaction mining mobile apps
 - Unsupervised learning to cluster visually similar elements

SuperAgent: A customer service chatbot for e-commerce websites

- Broke down chatbot into 3 engines
 - Product Information
 - Question answering
 - Customer Reviews
- The three engines are run in parallel on the scraped webdata, and the response with the highest score is returned



Product information

- Stored as set of knowledge triples (product name, attribute name, attribute value)
- Task boils down to attribute matching from a given query, which is performed by using a Deep Semantic Similarity Model (DSSM).

Question answering: FAQs

- For a given query q, create a set of n pairs {q, p_i} where n is the number of available FAQs.
- Trained a regression forest model using the features: DSSM Model, word embedding compositions, n-grams, subsequence overlaps, PairingWords, and mover's distance
- Return the answer from the FAQ most similar according to the regression model

Customer reviews

- Used opinion mining techniques to retrieve information from customer reviews
- For a given query, outputs customer reviews based on a three step pipeline
 - Candidate retrieval using Lucene
 - Candidate ranking with a regression model
 - Candidate triggering which decides whether a candidate is strong enough to output

FreeDOM: A transferrable neural architecture for structured information extraction on web documents

- Creates a generalizable architecture for extracting information for websites without extensive hand-crafted datasets
- Existing websites required hand annotations for each website that they were evaluating on
- Introduces concept of a <u>detail page</u> which describes the general format of a product page ie, a movie page on IMDB, a product page on Amazon, a show page on Netflix etc

Pipeline

Two stage

- Stage one learns dense representation for each DOM element using both markup and textual content
- Stage two infers further context for these representations by incorporating information from further points in the DOM

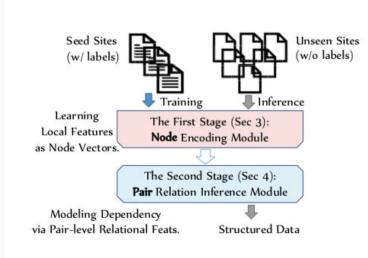


Figure 3: The overall workflow of FreeDom.

Results

Model \ #Seed Sites	k = 1	k = 2	k = 3	k = 4	k = 5
SSM	63.00	64.50	69.20	71.90	74.10
Render-Full	84.30	86.00	86.80	88.40	88.60
FreeDOM-NL	72.52	81.33	86.44	88.55	90.28
FreeDOM-Full	82.32	86.36	90.49	91.29	92.56

Table 2: Comparing performance (F1-score) of the four typical methods including our FreeDOM using different numbers of seed sites (from 1 to 5). Each entry is the mean value on all 8 verticals and 10 permutations of seed websites, thus 80 experiments in total. Note that Render-X methods utilize rendering results that require huge amount of external resources than SSM and FreeDOM-X.