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Challenges of Text generation:
 

 Semantics (meaning) 
 Consistency (long text generation)
 Logic (reasonable and making sense)



Challenges of Text generation:
 

 Semantics (meaning) Not our concern
 Consistency (long text generation)  Not our concern
 Logic (reasonable and making sense) Not our concern

Different Goals
 Information v. Enhancing interactiveness and persistence of 

human-machine interactions 
We already have the response - how can we make it more natural?



What for? What do we want to control?



What for? What do we want to control?

● Task of generating realistic sentences whose attributes can be 
controlled

● What can we control? [Prabhumoye et. al, 2020]

○ Stylistic (politeness, sentiment, formality, etc)
○ Demographic attributes of the person writing the text (e.g. 

gender, age, etc)
○ Content (e.g. information, keywords, entities) to be 

generated (BOW)
○ Order of information, events (e.g. plot summaries)



What for? What do we want to control?

● What for? (Dialogue response generation task) [Prabhumoye et. al, 2020]

○ Controlling persona
○ Controlling aspects of response (politeness, formality, authority, 

grounding response in external source of information, controlling 
topic sentence, story generation (control ending, persona, plot, 
and topic sentence)

○ Modulate formality/politeness of emails
○ Report generation (pulling source documents into unified doc)



Techniques:

Conditional Training
Weighted Decoding



Technique: Conditional Training: Model 
conditioned on additional control features
● Learn a sequence-to-sequence model P(y | x, z), z: discrete control 

variable

○ During training: determine corresponding z value for each 
sample

○ Append z to the end of the input sequence, z as START symbol 
for decoder; concatenate z to decoder’s input at every step 



Technique: Conditional Training: 
Example

● Controlling specificity via conditional training. 

● Define the specificity of an utterance y to be the 

mean NIDF of the words in y. 

● Control variable is mean NIDF (discretized into 10 

equal-sized buckets) which gives outputs with a 

narrower NIDF range, but produces less 

nonsensical outputs



Decoder Techniques: What makes a 
good conversation?
● Weighted Decoding (control features added to the decoding scoring 

function at test time only)
○ Increase/Decrease probability of words with certain features

■ Extreme Weights: block words (can have unintended consequences)

○ Limitation: controllable attribute must be defined at the word-level;  any 

desired utterance-level attribute must be redefined via word-level features



Decoder Techniques: What makes a 
good conversation?
● Low-Level Controllable Attributes:

○ Repetition n-gram overlap

■ External: (self-repetition  across  utterances)

■ Internal: (self-repetition  within  utterances)

■ Partner: (repeating the conversational partner)

○ Specificity (Normalized Inverse Document Frequency)

■ As a measure of word rareness



Decoder Techniques: Weighted Decoding

Example
● Controlling specificity via weighted decoding (use 

NIDF as decoding feature)

● At the extremes, the model produces only the 

most rare (gibberish) or the most common 

tokens (useless) 



Transformer 
+ Attribute Model 

i



GPT2  + PPLM Model

 

Image Courtesy of: https://eng.uber.com/pplm/



Why is GPT2 the Mammoth and 
PPLM the Mouse?

 



A General Transformer

 

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



Decoder Block

 

Orders

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



Input Embeddings: 
What gets passed in to the Decoder Block 

 

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



Decoder Block - With Embeddings

 

“Obey” wte

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Orders

Dot product 
+ softmax

GPT2 Output

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Recall

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Recall

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Masked Self-Attention
Second Law of Robotics
A robot must obey the orders given it by human beings except where such orders would 
conflict with the First Law.

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Masked Self-Attention: Steps

1. Create the Query, Key, and Value (Q, K, V) vectors 
2. For each input token, use its query vector to score against 

all the other key vectors, and then take weighted sum to get 
final context-dependent vector

[Alammar, 2019]



 

Step 1: Create Q-K-V Vectors

● Query: The query is a representation of the current word used to score against all 
the other words (using their keys). We only care about the query of the token we’re 
currently processing.

● Key: Key vectors are like labels for all the words in the segment. They’re what we 
match against in our search for relevant words.

● Value: Value vectors are actual word representations, once we’ve scored how 
relevant each word is, these are the values we add up to represent the current word.

[Alammar, 2019]



 

Step 1: Create Q-K-V Vectors

Image Courtesy of: 
http://jalammar.github.io
/illustrated-gpt2/



 

Step 2: ScoreStep 2: 
Score + 
Sum

Image Courtesy of: 
http://jalammar.github.io
/illustrated-gpt2/



 

Masked Self Attention: Q-K-V Vectors

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



 

Orders

Dot product 
+ softmax

GPT2 Overview

Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/



Controllable Generation: GPT2 + PPLM

Bayes’ Rule

p(x|a) ∝ p(x)p(a|x)

Image Courtesy of: https://eng.uber.com/pplm/



GPT2 + PPLM:

Image Courtesy of: https://eng.uber.com/pplm/



GPT2 + PPLM: The Three Passes
Image Courtesy of: https://eng.uber.com/pplm/



GPT2 + PPLM: Updating Gradients

Image Courtesy of: 
https://eng.uber.com/pplm/



GPT2 + PPLM: Keeping it Fluent 

● Kullback–Leibler (KL) Divergence

○ Minimizes the KL divergence between 

the output distribution of the modified 

and unmodified language models

● Post-norm Geometric Mean Fusion 

○ constantly ties the generated text to the 

unconditional p(x) LM distribution via 

sampling the word from the joint 

geometric distribution

[Dathari, 2019] Image Courtesy of: https://eng.uber.com/pplm/



Controllable Generation: GPT2 + PPLM

Image Courtesy of: https://eng.uber.com/pplm/
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