Controllable Response Generation

Susana Benavidez Andrew Kirjner Nick Seay Mentor: Sina Semnani

Overview

Part 1Text Generation vs Controllable Text Generation

Part 2

Conditional Training Weighted Decoding

Part 3

Transformer + Attribute Model: The Mammoth and the Mouse

Challenges of Text generation:

Semantics (meaning)

Consistency (long text generation)

Logic (reasonable and making sense)

Challenges of Text generation:

Semantics (meaning)Not our concernConsistency (long text generation)Not our concernLogic (reasonable and making sense)Not our concern

Different Goals

Information v. Enhancing interactiveness and persistence of human-machine interactions

We already have the response - how can we make it more natural?

What for? What do we want to control?

What for? What do we want to control?

- Task of generating realistic sentences whose attributes can be controlled
- What can we control? [Prabhumoye et. al, 2020]
 - Stylistic (politeness, sentiment, formality, etc)
 - Demographic attributes of the person writing the text (e.g. gender, age, etc)
 - Content (e.g. information, keywords, entities) to be generated (BOW)
 - Order of information, events (e.g. plot summaries)

What for? What do we want to control?

- What for? (Dialogue response generation task) [Prabhumoye et. al, 2020]
 - Controlling persona
 - Controlling aspects of response (politeness, formality, authority, grounding response in external source of information, controlling topic sentence, story generation (control ending, persona, plot, and topic sentence)
 - Modulate formality/politeness of emails
 - Report generation (pulling source documents into unified doc)

Techniques:

Conditional Training Weighted Decoding

Technique: Conditional Training: Model

conditioned on additional control features

- Learn a sequence-to-sequence model *P(y | x, z), z*: discrete **control variable**
 - During training: determine corresponding *z* value for each sample
 - Append *z* to the end of the input sequence, *z* as START symbol for decoder; concatenate *z* to decoder's input at every step

Technique: Conditional Training: Example

Input: Yes, I'm studying law at the moment Baseline Response: That sounds like a lot of fun!		
z	NIDF	Conditional Training Response
0	16.8%	Sounds like you are a great person!
2	18.3%	So you are a law student?
4	18.4%	That sounds like a lot of fun
6	22.8%	That sounds like a rewarding job!
8	24.4%	That sounds like a rewarding career!

- Controlling specificity via conditional training.
- Define the specificity of an utterance *y* to be the mean NIDF of the words in *y*.
- Control variable is mean NIDF (discretized into 10 equal-sized buckets) which gives outputs with a narrower NIDF range, but produces less nonsensical outputs

Decoder Techniques: What makes a good conversation?

- Weighted Decoding (control features added to the decoding scoring function at test time only)
 - Increase/Decrease probability of words with certain features
 - Extreme Weights: block words (can have unintended consequences)
 - Limitation: controllable attribute must be defined at the word-level; any desired utterance-level attribute must be redefined via word-level features

Decoder Techniques: What makes a good conversation?

- Low-Level Controllable Attributes:
 - **Repetition** n-gram overlap
 - External: (self-repetition across utterances)
 - Internal: (self-repetition within utterances)
 - Partner: (repeating the conversational partner)
 - **Specificity** (Normalized Inverse Document Frequency)
 - As a measure of word rareness

Decoder Techniques: Weighted Decoding

Example

Input: Yes, I'm studying law at the moment Baseline Response: That sounds like a lot of fun!		
Wt	NIDF	Weighted Decoding Response
-5.0	0.6%	Oh
0.0	17.1%	That sounds like a lot of fun!
3.0	18.3%	That sounds like a lot of fun. How long have you been studying?
7.0	38.5%	I majored in practising my spiritual full time philosophy test
10.0	71.9%	Oh wow! Merna jean isa paino yi hao hui bu acara sya gila []

- Controlling specificity via weighted decoding (use NIDF as decoding feature)
 - At the extremes, the model produces only the most rare (gibberish) or the most common tokens (useless)

Transformer + Attribute Model

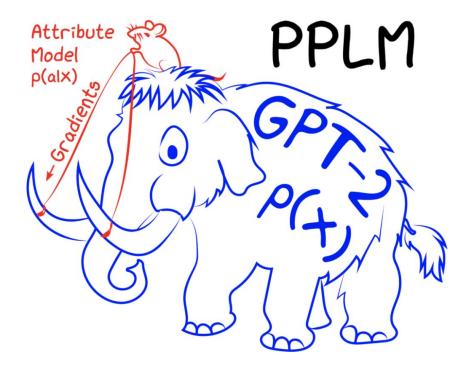
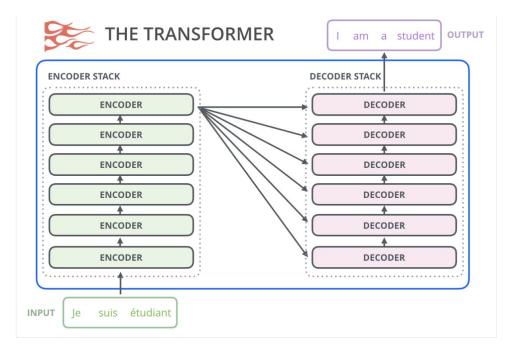


Image Courtesy of: https://eng.uber.com/pplm/

Why is GPT2 the Mammoth and PPLM the Mouse?

A General Transformer



Decoder Block

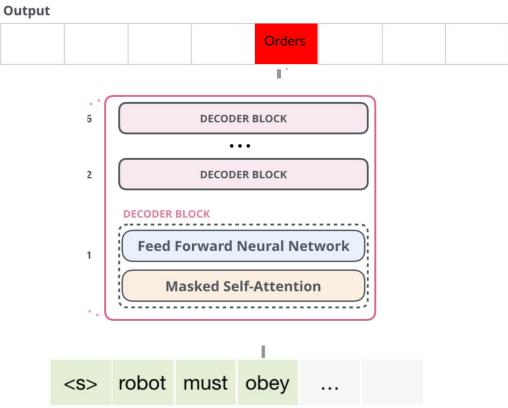
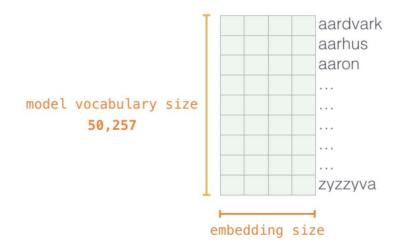


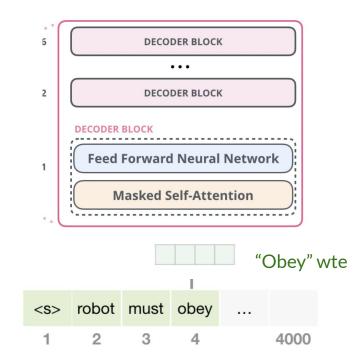
Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/

Input Embeddings:

What gets passed in to the Decoder Block



Decoder Block - With Embeddings



GPT2 Output

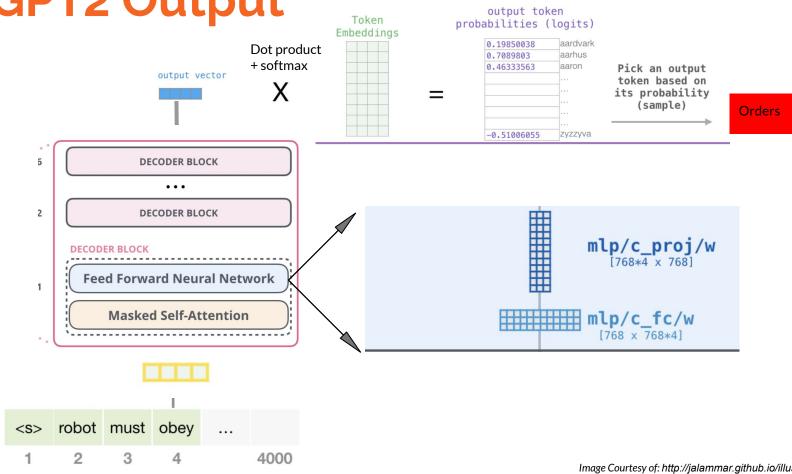
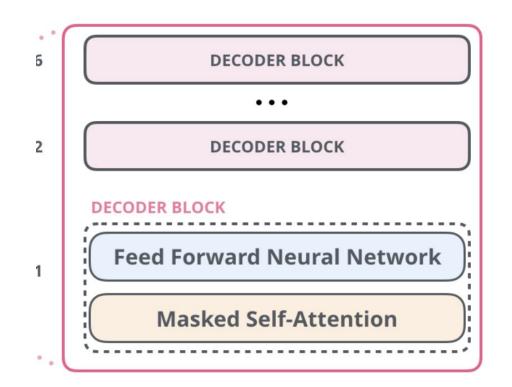
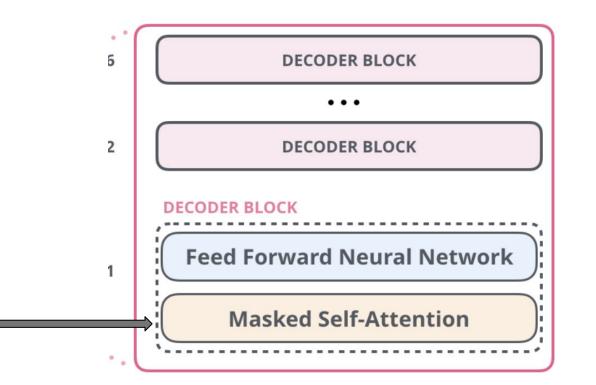


Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/

Recall



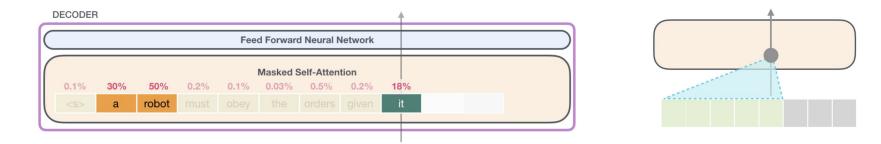
Recall



Masked Self-Attention

Second Law of Robotics

A robot must obey the orders given **it** by human beings except where **such orders** would conflict with the **First Law**.



Masked Self-Attention: Steps

- 1. Create the Query, Key, and Value (Q, K, V) vectors
- 2. For each input token, use its query vector to score against all the other key vectors, and then take weighted sum to get final context-dependent vector

Step 1: Create Q-K-V Vectors

- Query: The query is a representation of the current word used to score against all the other words (using their keys). We only care about the query of the token we're currently processing.
- Key: Key vectors are like labels for all the words in the segment. They're what we match against in our search for relevant words.
- Value: Value vectors are actual word representations, once we've scored how relevant each word is, these are the values we add up to represent the current word.

Step 1: Create Q-K-V Vectors

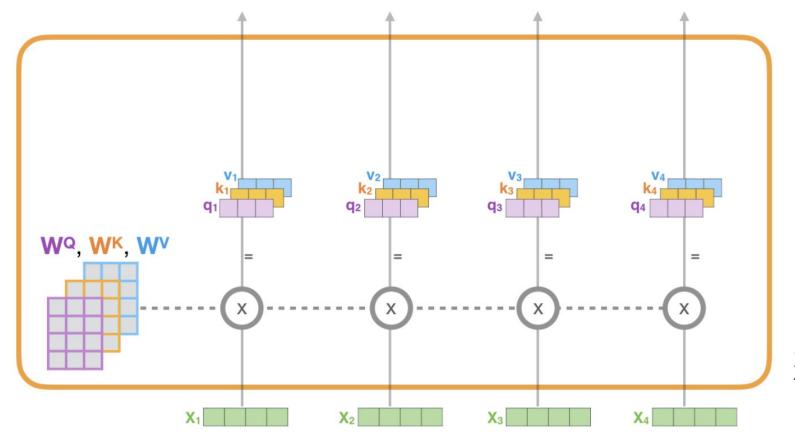


Image Courtesy of: http://jalammar.github.io /illustrated-gpt2/

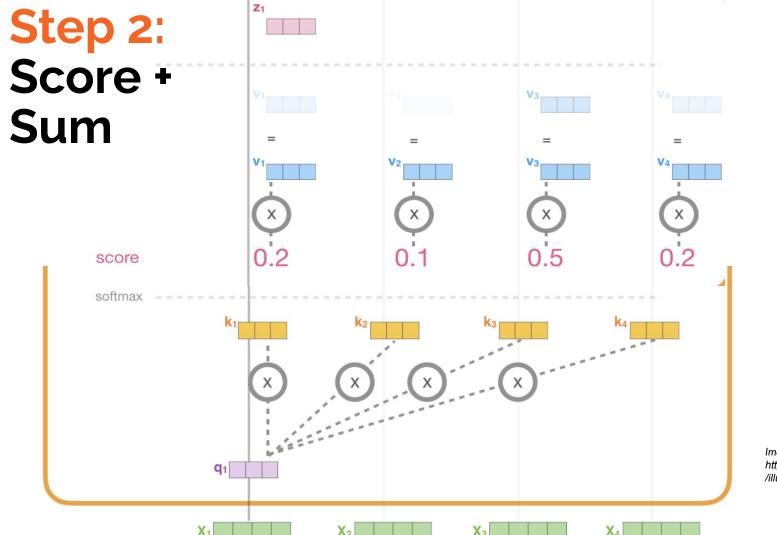
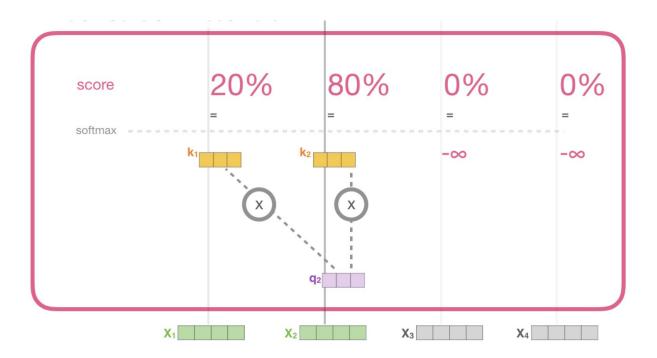


Image Courtesy of: http://jalammar.github.io /illustrated-gpt2/

Masked Self Attention: Q-K-V Vectors



GPT2 Overview

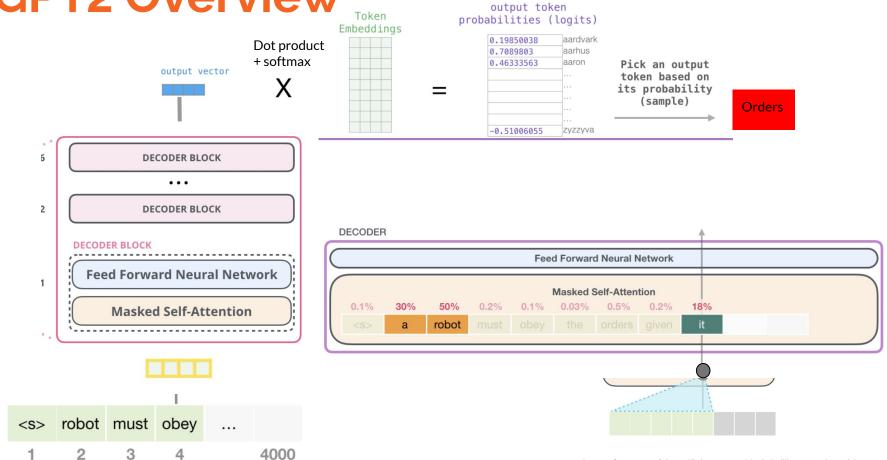
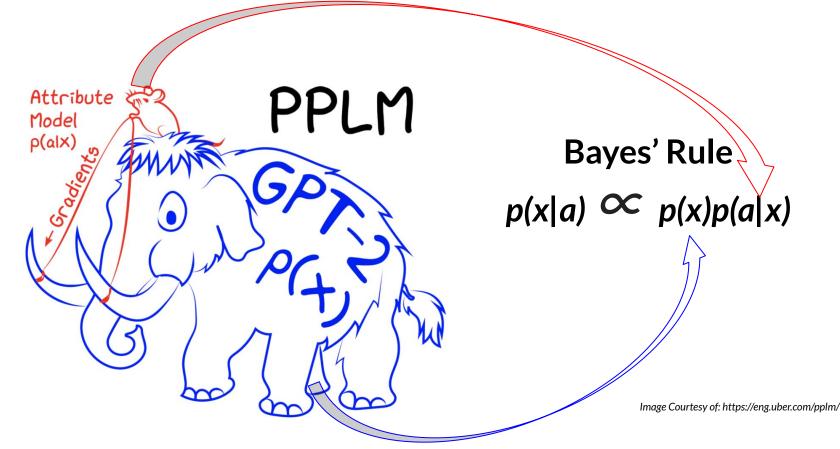


Image Courtesy of: http://jalammar.github.io/illustrated-gpt2/

Controllable Generation: GPT2 + PPLM

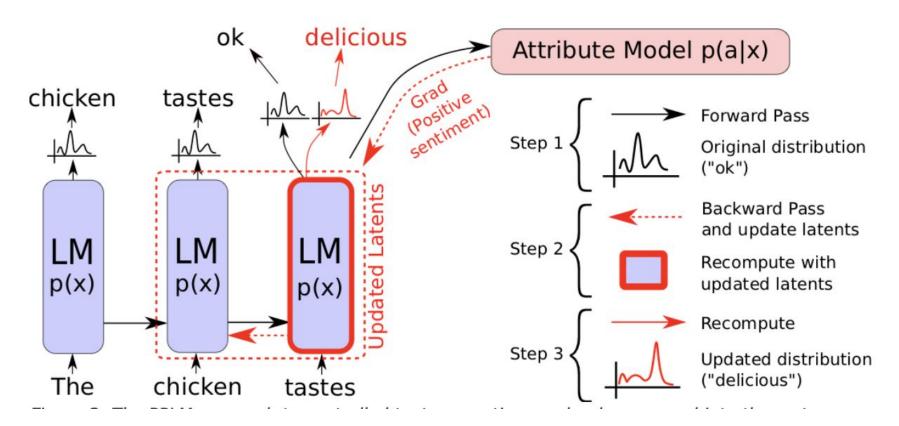


GPT2 + PPLM:

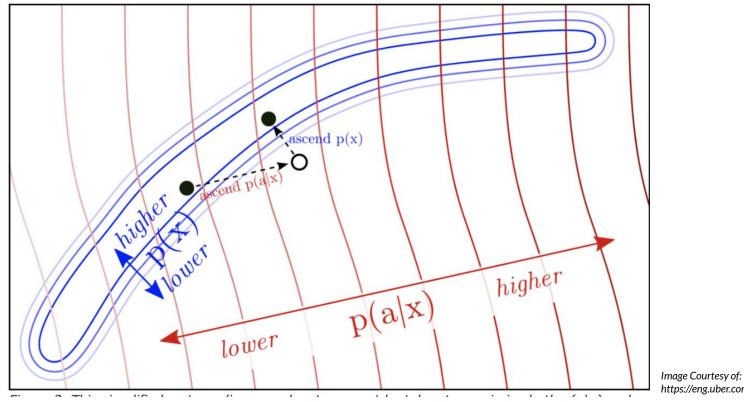
[-] The chicken is now out on the grill.

GPT2 + PPLM: The Three Passes

Image Courtesy of: https://eng.uber.com/pplm/



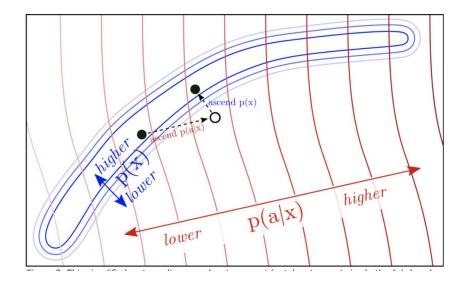
GPT2 + PPLM: Updating Gradients



https://eng.uber.com/pplm/

GPT2 + PPLM: Keeping it Fluent

- Kullback-Leibler (KL) Divergence
 - Minimizes the KL divergence between the output distribution of the modified and unmodified language models
- Post-norm Geometric Mean Fusion
 - constantly ties the generated text to the unconditional p(x) LM distribution via sampling the word from the joint geometric distribution



[Dathari, 2019]

Controllable Generation: GPT2 + PPLM

[-] <u>The chicken is now out on the grill.</u>

[Positive] <u>The chicken</u> was <u>delicious</u> – <u>wonderfully</u> moist, <u>perfectly</u> <u>delicious</u>, <u>superbly</u> <u>fresh</u> – and <u>perfectly</u> cooked. The only thing to say is that the sauce was <u>excellent</u>, and I think that the broth really complemented all of the other flavors. The <u>best</u> part was the sauce...

Questions?

Susana Benavidez Andrew Kirjner Nick Seay Mentor: Sina Semnani

Jay Alammar (2019, August 12). The Illustrated GPT-2 (Visualizing Transformer Language Models). Retrieved from http://jalammar.github.io/illustrated-gpt2/

Sumanth Dathathri, Andrea Madotto, Piero Molino, Jason Yosinski, & Rosanne Liu. (2019, December 11). Controlling Text Generation with Plug and Play Language Models. Retrieved from https://eng.uber.com/pplm/

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, & Rosanne Liu. (2019). Plug and Play Language Models: A Simple Approach to Controlled Text Generation.

Shrimai Prabhumoye, Alan W Black, & Ruslan Salakhutdinov. (2020). Exploring Controllable Text Generation Techniques.

Abigail See, Stephen Roller, Douwe Kiela, & Jason Weston. (2019). What makes a good conversation? How controllable attributes affect human judgments.