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1. Why Datasets?

“Perhaps the most important news of our day is that datasets—not
algorithms—might be the key limiting factor to development of human-
level artificial intelligence.”

- Alexander Wissner-Gross, 2016

Harvard University Institute for Applied Computational Science
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2. MultiwOZ in the Almond/ThingTalk/Genie Context

User: | need to book a hotel in the east
that has four stars

Agent: What is your price range?
User: Price doesn’t matter as long
as it has free wifi.

Hotel-Rating: 4, Hotel-Location: East,
Hotel-Wifi: True, Hotel-Price: dontcare

Agent: In that case, | would

User: Thanks. Please get me a taxi recommend Allenbell.
from here to the hotel.
Hotel-Rating: 4, Hotel-Location: East,
Hotel-Wifi: True, Hotel-Price: dontcare
Hotel-Name: Allenbell
Taxi-Departure: Home, Taxi Destination: Allenbell

Figure from Kumar et al. 2020
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2. MultiwOZ in the Almond/ThingTalk/Genie Context

*  MultiwOZ (and most datasets)
has a corpus and annotations.

 We personally only use the
former. We don't train on
MultiwOZ.

| e
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3a. Dialogue Generation

Our General Paradigm:

F g Database & KB
Goal @“ e @ — APIs

User Agent

t—; i%poncy

Dialogue Training

Data (Pre-Annotated)
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Human-to-Machine CemO ) O o= 2
Bootstrap from an existing dialogue system to build a new '—b

task-oriented dialogue corpora.

Example: Let’'s Go Bus Information System, used for the first Dialogue State Tracking
Challenge (DSTC)

O User: real humans interacting with the dialogue system
€ Agent: existing dialogue system, likely following rigid rule-based dialogue policy

@ Goal: derived from existing dialogue system

£ Database / KB: derived from existing dialogue system
APIs: derived from existing dialogue system

Policy: derived from existing dialogue system

Great for expanding the capabilities of an existing domain, but can we generalize beyond
this domain?
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Machine-to-Machine CemO ) O o= 2
Engineer a simulated user plus a transaction environment to manufacture '—b

dialogue templates en masse, then map those dialogue templates to natural language.

Example: Shah et al., 2018, “a framework combining automation and crowdsourcing to
rapidly bootstrap end-to-end dialogue agents for goal-oriented dialogues”

O User: engineered, agenda-based simulator
€ Agent: engineered, likely from a finite-state machine

@ Goal: derived from scenarios produced by Intent+Slots task schema
£ Database / KB: domain-specific, wrapped into API client

APIs: provided by developer

Policy: engineered specifically for agent

Great for exhaustively exploring the space of possible dialogues, but will the training data
actually match real-world scenarios?
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Human-to-Human CemO ) O o= 2
If we really want our agents mimicking human dialogue behavior, why not learn '—b

from real human conversations?

Example: Twitter dataset (Ritter et al., 2010), Reddit conversations (Schrading et al., 2015),
Ubuntu technical support corpus (Lowe et al., 2015)

© User: real humans on the Internet
€ Agent: real humans on the Internet

@ Goal: 2??
£ Database / KB: 2?7
&3 APIs: 777

Policy: real human dialogue policies!

Great for teaching a system real human dialogue patterns, but how will we ground
dialogues to the KB + API required by our dialogue agent?
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Human-to-Human (WO2Z) CemOmh O w5
Humans produce the best dialogue behavior. Let’'s use humans to '—b

simulate a machine dialogue agent, grounding the dialogue in our KB+APIs.

Example: WOZ2.0 (Wen et al., 2017), FRAMES (El Asri et al., 2017), Multiw0OZz{1.0, 2.0, 2.1}
(Budzianowski et al., 2018)

O User: crowdworker
€ Agent: crowdworker, simulating a human-quality dialogue system

@ Goal: provided by the task description

£ Database / KB: domain-specific, provided to the agent by experimenters
APIs: domain-specific, provided to the agent by experimenters

Policy: up to the crowdworker — nuanced, but maybe idiosyncratic

Great for combining human dialogue policies with grounding in the specific transaction
domain, but annotations will be nontrivial — how do we ensure their correctness?
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Dialogue Generation — Summary

Human-to-Machine Machine-to-Machine

Bootstrap from an existing dialogue Engineer a simulated user plus a

system to build a new task-oriented transaction environment to

dialogue corpora. manufacture dialogue templates en
masse, then map those dialogue
templates to natural language.

Human-to-Human Human-to-Human (WO2)

If we really want our agents Humans produce the best dialogue

mimicking human dialogue behavior. Let’'s use humans to

behavior, why not learn from real simulate a machine dialogue agent,

human conversations? grounding the dialogue in our
KB+APIs.
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Dialogue Generation — Pros & Cons

Human-to-Machine Machine-to-Machine

+ Intuitive to use existing dialogue data for ~ + [Full coverage of all dialogue
dialogue system development outcomes in domain

- Only possible to improve existing, working :
systems. No generalizations to new - Naturalness of the dialogue
domains mismatches with real interactions

- Initial system’s capacities & biases may - Hard to simulate noisy conditions
encourage behaviors that perform in typical of real interactions
testing but don’t generalize

Human-to-Human Human-to-Human (WO2)

+ Training data will map directly + Ground realistic human dialogue
onto real-world interactions within the capacities of the

- No grounding in any existing dialogue system
knowledge base or API limits - High prevalence of misannotation
usability errors

Stanford University



Question

WHICH DIALOGUE
GENERATION TECHNIQUE
SEEMS MOST SUITED FOR

YOUR OWN PROJECT’S
DOMAIN?
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3b. Annotation generation

"Built-in" annotations (Machine-generated utterances)

« If the utterance is machine-generated, that it probably already has a
formal language annotation

« Annotation is not really separate from the dialogue generation
« WikiSQL [Zhong et al. 2017]

+ Only skill needed is paraphrasing
- Still less natural and diverse
- Requires good utterance synthesis

- -
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3b. Annotation generation

Manual annotations (Human-generated utterances)

« Annotation as an explicit step in the process

« Usually done on top of provided data, possibly as a separate process
« Spider [Yu et al. 2019]

+ The dataset and the annotations are probably pretty good
- Potentially very expensive (experts often required)
- Sometimes not actually very good

- -
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3b. Annotation generation

Machine-assisted annotations (Human-generated utterances)

« Technology used in making the annotation process seamless or easier
for humans

* Not necessarily a separate step in the process
* QA-SRL [He et al. 2015]

+ The dataset and the annotations are probably pretty good
- Some upfront cost of developing a good system
- Not always possible

- -
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Question

HOW DO YOU THINK
MACHINE-ASSISTED
ANNOTATION COULD WORK
IN YOUR PARTICULAR
PROJECT?
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A Fundamental Tradeoff

Expressiveness of Vs Ease of parsing,
your representation " annotation, and execution

Stanford University



3c. Annotation styles

Key Tradeoff: expressiveness of the representation vs. ease of
annotation/parsing/execution

* Logical forms [Zettlemoyer & Collins, 2012; Wang et al. 2015]
* Intent and slot tagging [Goyal et al., 2017; Rastogi et al., 2020; many others...]
« Heirarchical representations [Gupta et al., 2018]
- Executable representations
« SQL[Zhong et al., 2017; Yu et al., 2019]
* ThingTalk [Campagna et al., 2019]

Stanford University



Logical forms

Zettlemoyer & Collins, 2012; Wang et al. 2015

Rigid logical formalisms for queries results in a precise, machine-learnable, and
brittle representation.

a) Utah borders Idaho b) What states border Texas
NP (S\NP)/NP NP (S/(S\NP))/N N (S\NP)/NP NP
utah Az \y.borders(y,x) idaho AAgAx.f(x) Aglx) Ax.state(xz) Az Ay.borders(y,x)  texas

(S\NP) S/(S\NP) ’ (S\NP)
Ay.borders(y, idaho) Ag.A\x.state(xz) A g(x) Ay.borders(y, texas)
>
S S
borders(utah, idaho) Ax.state(xz) A borders(x, texas)

Figure 2: Two examples of CCG parses.
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Intent and slot tagging
Goyal et al., 2017; Rastogi et al., 2020; many others...

More ubiquitous, less expert-reliant representation allows coverage of more
possible dialogue states.

Table 2: Full ontology for all domains in our data-set. The upper script indicates which domains it belongs
to. *: universal, 1: restaurant, 2: hotel, 3: attraction, 4: taxi, 5: train, 6: hospital, 7: police.

inform* / request* / select'?> / recommend/"** / not found'**

act type | request booking info'?? / offer booking'?*° / inform booked?*” / decline booking
welcome™ /greet™ / bye™ / reqmore*

address* / postcode* / phone* / name'?** / no of choices'?*° / area
pricerange!'?? / type'?3 / internet? / parking? / stars? / open hours® / departure®
destination®® / leave after?® / arrive by*® / no of people!?® / reference no.1%%> /
trainID® / ticket price® / travel time® / department’ / day'?®° / no of days'?3

Figure from MultiwOZ (Budzianowski et al., 2018)

1235

123 /

slots
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Hierarchical Annotations

Gupta et al., 2018

Nesting additional intents within slots allows for function composition & nested API

calls.
IN:GET_DIRECTIONS IN:GET_DISTANCE
//\
Driving directions to SL:DESTINATION  How faris SL:DESTINATION
IN:GET_EVENT IN: GET_RESTAU|RANT_LOCATION
the SL:NAM|EEVENT SL:CAT|EVENT the SL:TYPE_FOOD shop
Eagles game co )|j‘ee

Figure 1: Example TOP annotations of utterances. Intents are prefixed with IN: and slots with SL:. In
a traditional intent-slot system, the SL: DESTINATION could not have an intent nested inside it.
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Executable Representations: SQL
Zhong et al., 2017; Yu et al., 2019

Structured nature of the SQL representation helps prune the space of possibly
generated queries, simplifying the generation problem.

Table: CFLDraft Question:

Pick # |CFL Team Player Position | College (How many CFL teams are from York College?
27 Hamilton Tiger-Cats | Connor Healy DB Wilfrid Laurier sqL:

28 Calgary Stampeders | Anthony Forgone | OL York SELECT COUNT CFL Team FROM

29 Ottawa Renegades |L.P. Ladouceur DT California [CFLDraft WHERE College = "York"]

30 Toronto Argonauts |Frank Hoffman DL York Result:

Figure 2: An example in WikiSQL. The inputs consist of a table and a question. The outputs consist
of a ground truth SQL query and the corresponding result from execution.
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Executable Representations: ThingTalk

Thingpedia
Campagna et al., 2019 it o i LOM™M o ol
Get a cat picture and post ﬂ‘- m @ . > o E%
Semantic-preserving transformation o # 2 1 o oS
rules mean canonical examples for ©@Dr~w
training the neural semantic parser. &h \)

v
now => @com.thecatapi.get()
ThingTalk | => @com.facebook.post_picture(picture url =
picture_url, caption = "funny cat");

M), Alice

lunny cat

ﬂm

Execution
result

/Y Like (O Comment Share
o J
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4. MultiwOZ Revisited

« MultiwOZ is a human-human dataset, mostly annotated, with intent
and slot tagging.

« But we don't use it fully, so that ends up being less important.

«  MultiwOZ proposes itself as a benchmark dataset for:
- Dialogue State Tracking
« Dialogue Context-to-Text Generation
« Dialogue Act-to-Text Generation
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Question

ARE THERE "BENCHMARKING
BLIND SPOTS" OR BIASES
THAT YOUR PROJECT MIGHT
SUFFER BECAUSE OF THE
DATASET CHOICE?
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Thank you!
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