
A Formal Language & Data Engineering
Approach to Multi-Turn Dialogues

Giovanni Campagna
(Work done in collaboration with Agata Foryciarz, Mehrad Moradshahi,

Sina Semnani, Silei Xu & others in OVAL – under supervision of Prof. Monica Lam)
(Genie Logo by SK Lim)

CS 2 9 4 S / W 2 0 2 0 , L E CT URE 3

The “State of The Art” in VA Tools: Slot Elicitation

U: I want to make a restaurant reservation for Terun

A: For how many people?

U: 3 people

A: At what time?

U: 7pm
A: Ok, I’m going to make a restaurant reservation

for 3 people at Terun at 7pm.

• One slot / parameter at a time

• Fixed, developer-provided questions per parameter

• No error path: if the user doesn’t answer the question, tough luck

Real World Dialogues [Budzianowski et al. 2018]

U: Could you give me information about a restaurant called Panahar?

A: Absolutely. Panahar is a more expensive Indian restaurant.
It is located at 8 Norfolk Street city centre. Their postal code is cb12lf.

Their phone number is 01223355012.

U: Could you book a table for me there on Friday?

A: Yes, I can, for how many people and what time on Friday?

U: There will be 4 of us and we would like to eat at 11:00.

A: Booking was unfortunately unsuccessful.
Can we try another day or time slot ?

U: Sure, how about 10:00?

Transaction (Slot-Filling) Dialogues

• A subset of task-oriented dialogues (participants trying to “do things”)

• User introduces the transaction & drives the conversation

• Agent provides answers & suggestions + elicits info to complete actions

• Carrying over of contextual information

• Multiple slots per turn

• Error correction and recovery

• Long studied field

• First notable work: Dialogue State Tracking Challenge (2011)

Can we solve transaction dialogues once and for all?

The Practical Modular Approach To Dialogues

User Utterance

NLU

Intent & Slots

Dialogue State Tracker

Language Generation

Backend
API calls

Agent Reply

Training Data

Policy
Amorphous Blob of

Domain-Specific Code

The Academic Modular Approach To Dialogues

Complete Dialogue History

Neural State Tracker

Intent & Slots

Language Generation

Backend
API calls

Agent Reply

Training Data

Policy
Amorphous Blob of

Domain-Specific Code

State of the Art: Manually Annotated Conversations

• Dialogues are vast, complex and very varied → need a lot of data to train

• Alexa: 10k employees, millions of manually annotated sentences

• MultiWOZ dataset [Budzianowski et al.]:

• ~10k hand annotated dialogues in 5 domains

• ~100k turns in total

• State of the art: about 55% joint accuracy

• About 70% of the errors are misannotations [Zhou and Small]

Our Approach

User Utterance

Neural NLU & State Tracking

Domain-Independent
Dialogue State Machine

Executable ThingTalk Code

Backend
API calls

Neural Language Generation

Agent Reply

ThingTalk Runtime

Formal Dialogue State
Synthesis &
Automatic
Paraphrasing

New Dialogue State

Results

Key Insights

• Formal, executable representation for dialogue states

• Fed to & generated by neural network

• Dialogue state machine to specify agent behavior

• Synthesis approach to training data

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

But First, A Bit of Terminology

• Utterance: each phrase said by the user or agent

• Turn: a pair of (agent, user) interactions

• Dialogue: well-formed sequence of turns

• History: sequence of all turns up to the current point

• State: formal representation of the dialogue, up to a certain point
User state: right after the user speaks
Result state: right after execution
Agent state: right after the agent speaks

• Abstract State: family of states, as defined by the dialogue state machine

• Dialogue Act: pair of utterance and state after the utterance

• Abstract Dialogue Act: family of dialogue acts

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

The High-Level Structure of Transaction Dialogues

A: Hello, how can I help you?

U: Hello, I am looking for an Italian restaurant in Palo Alto.

A: How about Terun? It’s a highly rated pizza restaurant.

U: Is it good for children?

A: I think so. 120 reviewers say the ambience is “family
friendly”.

U: Ok, can I make a reservation for Friday at 9pm?

A: How many people?

U: 30 people

A: I am sorry, I cannot find you a table at that time. How
about 9:30pm?

U: Sure, that works.

A: Alright, your reservation is confirmed for Friday 1/24 at
9:30 pm, 30 people.

Anything else I can help you with?

Greet

Search

Action Slot Fill

Execution

Beyond Restaurant Reservations

U: I would like to watch a movie.

A: What movie would you like? Do you like
comedy?

U: I prefer action movies

A: How about Spiderman?

U: Sure I like that

A: Opening Netflix…

U: I need to buy new shoes.

A: Are you looking for sneakers or leather
shoes?

U: Probably a new pair of Nikes

A: How about the new Air Jordans? They are
$299 on nike.com

<Picture>

U: They look cool! I’ll take them.

A: Would you like them shipped at your usual
address?

U: Yes please

A: Alright, payment is processing. With 2-day
standard shipping, they will arrive Tuesday.

U: Hey Genie, order me a grande latte

A: Where would you like to pick it up?

U: Stanford & El Camino

A: Alright, ordering 1 grande latte from
Starbucks. That will be $3.65 + tax. It
will be ready in 10 minutes.

Why Are Transactions Important?

• Superset of interactive search (informational)

• Covers all dialogues that execute user-driven actions

• Purchases

• Reservations

• Tickets

• Simple customer support: changing/cancelling orders, paying bills,
scheduling repairs/returns, etc.

A State Machine For Transaction Dialogues

Abstract user act

Abstract agent act

Abstract state

Executable Representations

• Previously: domain + abstract
dialogue act + slots

• Slot: “latest mention of an entity
from the user”

• Ill-defined

U: I’m looking for an Italian restaurant.
[food = “Italian”]

A: I found Terun. Would you like a
reservation?

U: Yes please!
[food = “Italian”, name = ???]

• Contrast: formal ThingTalk executable semantics

• Straightforward denotational semantics through relational algebra

• It either gives you the answer, or it doesn’t!

The Restaurant Example

NLU (contextual semantic parsing)

I’m looking for an Italian restaurant

$dialogue execute:
@Restaurant(), food == “Italian”

Compilation & Execution

{ name = “Terun”, price_range = moderate, geo = “California Ave”, … }

Policy & Language Generation

I have found Terun. Would you like a
reservation?

The Language of Dialogue States (User Side)

$dialogue @org.thingpedia.dialogue.transaction.execute ;

now => @com.yelp.Restaurant(), food == “italian” => notify

#[results=[

{ name = “Terun”, price_range = moderate, … },

…

];

now => @com.yelp.Restaurant(), food == “italian” &&
price_range == enum(cheap) => notify;

now => @com.yelp.make_reservation(restaurant=$?, …);

The Language of Dialogue States (Agent Side)

$dialogue @org.thingpedia.dialogue.transaction.sys_rec_one ;

now => @com.yelp.Restaurant(), food == “italian” => notify

#[results=[

{ name = “Terun”, price_range = moderate, … },

…

];

now => @com.yelp.make_reservation(restaurant=$?, …);

now => @com.yelp.make_reservation(restaurant=“Terun”, …)

#[confirm=enum(proposed)];

User & Agent Dialogue Act Labels

• greet

• execute

• learn_more

• ask_recommend

• cancel

• end

• sys_greet
• sys_search_question(param)
• sys_generic_search_question
• sys_slot_fill(param)
• sys_recommend_one
• sys_recommend_two
• sys_recommend_three
• sys_propose_refined_query
• sys_learn_more_what
• sys_empty_search_question(param)
• sys_empty_search
• sys_action_success
• sys_action_error
• sys_anything_else
• sys_goodbye

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

You’ve Seen This Picture Before

Neural Semantic
Parser

Natural
Language

ThingTalk

I’m looking for an
Italian restaurant

$dialogue execute:
@Restaurant(),

food == “Italian”

Adding The Dialogue State

Neural Semantic
Parser

Natural
Language

Next ThingTalk

I’m looking for an
Italian restaurant

$dialogue execute:
@Restaurant(),

food == “Italian”

Previous
ThingTalk

$dialogue
sys_search_question(food):

@Restaurant()

Adding The Dialogue State

Neural Semantic
Parser

Natural
Language

Next ThingTalk

I’m looking for an
Italian restaurant

$dialogue execute:
@Restaurant(),

food == “Italian” &&
price_range == moderate

Previous
ThingTalk

$dialogue
sys_search_question(food):

@Restaurant(),
price_range == moderate

The Neural Model (Proposal A)

The Neural Model (Proposal B)

Quiz 1

What are the advantages & disadvantages of
the contextual NLU model vs. training with

the full dialogue history?

Pros & Cons of Contextual NLU

• Positive: Minimal information to disambiguate input

• Formal state removes “extra” information

• Controllable amount of history to show to network

• Reduces needed training data

• Positive: Formal guarantees of agent behavior

• Can prevent “bad states” with tools of formal verification

• Negative: Uncertainty cannot be captured

• Hard sample of one dialogue state as output of the network

• Inherent ambiguity must be expressed in formalism

• Statistical ambiguity is lost

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

The Dialogue Agent, Again

User Utterance

Neural NLU & State Tracking

Agent Policy

Executable State

Backend
API calls

Neural Language Generation

Agent Reply

ThingTalk Runtime

Current Dialogue State

New Dialogue State

Result State

Specifying The Dialogue Agent

Domain dependent
schema + APIs +

annotations

Domain-independent
state machine

Synthesis
(Simulation)

Contextual
NLU

Agent Policy

Neural NLG

Reminder: The Transaction Dialogue State Machine

Abstract user act

Abstract agent act

Abstract state

Zooming In…

ActionError

User act

Agent act

Abstract state

SearchRequest

LargeResult SmallResult SingleResult EmptyResult

SlotFillQuestion ProposeN ProposeOne EmptySearchError

AskAction InfoQuestion

SuccessfulActionIncompleteAction

SlotFillQuestion ActionResult

FailedAction

SearchRefine

Specifying Dialogue State Machines
Result state

state function

transition
template

User template

Agent template

Abstract state

SmallResult

ProposeN
I have ___ and ___. Both

are ___.

ProposeOne
I have ___. It is a ___ ___

that ___.

AskAction
I like that. Can you help

me ___ it?

InfoQuestion
What is the ___ of ___?

IncompleteAction

SlotFillQuestion
__ what ___ would you like it?

SearchRefine
I don’t like ___. Do you
have something ___?

Specifying Dialogue State Machines

State function: map dialogue state (ThingTalk code + result) to abstract state

Transition templates: triple of (abstract state, agent act, user act)
+ validation code

Agent templates: express agent act as sentence + target state

User templates: express user act as sentence + target state

Specifying The Domain For A Transaction Dialogue

Restaurant [“restaurant”, “food place”]

• id : Entity(Restaurant)

• geo : Location
[“address”, “in #”, “near #”, “around #”]

• price : Enum(cheap, moderate, expensive)
[“# -ly priced “, “#”]

• rating : Number [min=1, max=5]
[“rated #”]

• cuisines : Array(Entity(Cuisine))
[“# food”, “serves # food“]

• …

MakeReservation
[“reserve #”, “book #”]

• restaurant : Entity(Restaurant)

• book_people : Number [min=1]
[“for #”, “for # people”]

• book_day : Date [“for #”]

• book_time : Time [“at #”, “for #”]

• confirmation_number : String
[“confirmation number”]

Query (Schema) Actions

In ThingTalk Syntax

class @com.yelp {

query restaurant(out id: Entity(com.yelp:restaurant),

out food: String

#[canonical={

base=[“cuisine”, “food”],

property=[“# cuisine”, “# food”]

}]

#[prompt=[“what would you like to eat”]],

…);

action make_reservation(in req restaurant: Entity(com.yelp:restaurant),

in req book_day : Date
#_[canonical={

base=[“day”, “date”],

preposition=[“for #”, “on #”]

}], …)

}

The General Form of Transactional Domains

• One query + one or more actions

• Query: the subject of the discourse

• Actions: what you can do with it

• Query with id parameter of Entity type

• Query must have the same name as the Entity type

• Other parameters are the properties of the object

• Some are searchable (#[filterable=true])

• Actions have one parameter with the same type as the query ID

• Ties query and actions together

Concretely Doing Things: The Backend

const Tp = require(‘thingpedia’);

module.exports = class extends Tp.BaseDevice {

get_restaurant() {

// return the content of the database

// to perform the query

return …;

}

do_make_reservation({ restaurant, book_day, … }) {

// call the API to make it happen!

}

}

Putting It All Together
SmallResult

Restaurant, price == moderate && geo == “Palo Alto”
{ id = “Terun”, price = moderate, cuisines = [“pizza”], … }

{ id = “Coconuts”, price = moderate, cuisines = [“caribbean”], … }

ProposeN
I have Terun and Coconuts.

Both are moderately priced.

ProposeOne
I have Terun. It is a moderately priced

restaurant that serves pizza.

AskAction
I like that. Can you help

me book it?

InfoQuestion
What is the address

of Terun?

IncompleteAction

SlotFillQuestion
For what date would you like it?

SearchRefine
I don’t like pizza. Do you

have something Caribbean?

Quiz 3

What are examples of dialogues that cannot
be expressed as transactions?

Designing State Machines (For Your Projects)

1. State with few manually written dialogues

2. Annotate fully

3. Collapse into abstract states, agent acts and user acts (on paper)

4. Draw the state machine (on paper)

5. Separate domain-independent & domain-dependent parts

6. Code the state machine in Genie

7. Generate a sample dataset

8. Observe, refine, iterate

Designing State Machines (For Your Projects)

• Write state function

• Given concrete state of the dialogue, capture abstract state

• Ideally, should work for all possible states

• Write agent templates

• Both sentence & formal state

• Given agent sentence, write as many user templates as meaningful

• Templates will depend on the specifics of the agent sentence!

• Capture pragmatics: why is the user saying something?

• Collapse or distinguish meaning accordingly

• OK to write a little nonsense

• Helpful to look at existing human-human conversations

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

Reminder: Specifying The Dialogue Agent

Domain dependent
schema + APIs +

annotations

Domain-independent
state machine

Synthesis
(Simulation)

Contextual
NLU

Agent Policy

Neural NLG

Training the NLU

• Step 1: synthesize as many dialogues as possible

• Enumerate many possible next states

• Simulate execution

• Iterate until enough dialogues generated

• Step 2: extract one training sample per turn

• Old state + user utterance + new state

Constructing the Agent Policy

• Dialogue state from execution with real policy

• Sample transition

• Sample agent template

• Output: state after agent speaks + synthetic utterance

• (Future) neural NLG to improve synthetic utterance

Quiz 4

How do you compare
the Genie way to write the agent

vs. dialogue trees?

Lecture Outline

1. The last state machine for transaction dialogues

2. Combining language understanding & state tracking

3. How to specify a dialogue agent

4. From specification to a complete agent

5. Experimental results (and how to push them)

A Preparatory Experiment on MultiWOZ

• Zero-shot domain extension

• Train on 4 domains, test on the 5th

• Zero-shot as in “no new human-written training data”

• Ok to retrain

• Ok to beef up the training data with automatically generated data

• Domain adaptation: convert e.g. taxi dialogues to train ticket dialogues

• Representation: domain + slots

• Reuse the existing training data

• Comes with all the “quirks” (30% bad annotations)

• Models:

• TRADE [Wu et al.]

• SUMBT [Lee et al.]

history-based neural
dialogue state trackers

Results

ThingTalk Results (Work In Progress)

• Manually annotated single-domain restaurant dialogues

• Turn-by-turn accuracy

• With only synthesized data: 61%

• (Actually fluctuates a lot – 51-55%)

• With automatic paraphrasing: 65%

• Help us boost it up!

Recap: Dialogues The Genie Way™

• Formal, executable state representation

• Contextual NLU for state tracking: (current state , user input) → new state

• Data engineering of both agent and user at the same time

• Domain-independent state machine factored out

• A lot more state transitions possible

• Domain-specific in the form annotations (generated in the future?)

• Cheap, fast, powerful!

Quiz 3 (Open Ended)

How hard is it
to write new dialogue state machines?

