
An Overview of
Natural Language Processing

Sina Semnani

CS294S May 5, 2020

some slides are adopted from Giovanni Campagna

Outline

• Introduction

• Deep Learning for Natural Language Processing

• Word Representation

• One-hot

• Dense

• Language Models

• Contextual

• Sequence to Sequence

• Attention

Natural Language Processing

• How do we map from text to integers/real numbers/text

• Examples:

• Text Classification

• Question Answering

• Semantic Parsing

Natural Language Processing

• How do we map from text to integers/real numbers/text

• Examples:

• Text Classification

• Question Answering

• Semantic Parsing

the writer-director has made a film so
unabashedly hopeful that it actually makes
the heart soar.

+1 (positive)

Input Output

Natural Language Processing

• How do we map from text to integers/real numbers/text

• Examples:

• Text Classification

• Question Answering

• Semantic Parsing

Paragraph: … With a population of 3,792,621,
Los Angeles is the most populous city in
California and ...

Question: What is the population of Los
Angeles?

Answer: 3,792,621

Input Output

now => @QA.restaurant(), geo ==
makeLocation(“Palo Alto”) &&
servesCuisine =~ “Chinese” =>
notify

Natural Language Processing

• How do we map from text to integers/real numbers/text

• Examples:

• Text Classification

• Question Answering

• Semantic Parsing

Input

Show me Chinese restaurants in Palo Alto.

Output

NLP Has Been Especially Successful in Recent Years

“Human” performance is 90.5%

• Even “super-human”, according to some benchmarks for Question
Answering, Natural Language Inference, etc.

Image from IBM Research Blog

But Not Entirely …

But Not Entirely …

• Reported human performance can be misleading

• These models are very fragile and lack common sense

• Some adversarial tests result in a 2-10x accuracy drop while humans are
unaffected

But Not Entirely …

• Reported human performance can be misleading

• These models are very fragile and lack common sense

• Some adversarial tests result in a 2-10x accuracy drop while humans are
unaffected

Paragraph: Its counties of Los Angeles, Orange,
San Diego, San Bernardino, and Riverside are
the five most populous in the state and all are in
the top 15 most populous counties in the United
States.

Question: What is the smallest geographical
region discussed?

Answer: Riverside

But Not Entirely …

• Reported human performance can be misleading

• These models are very fragile and lack common sense

• Some adversarial tests result in a 2-10x accuracy drop while humans are
unaffected

Paragraph: Its counties of Los Angeles, Orange,
San Diego, San Bernardino, and Riverside are
the five most populous in the state and all are in
the top 15 most populous counties in the United
States. a simplest geographic regions discuss
donald trump.
Question: What is the smallest geographical
region discussed?

Answer: donald trump

But Not Entirely …

• Besides, we have not even come close to humans on many other tasks

• Understanding nontrivial dialogues

• Multilingual tasks and low-resource languages

• Empathetic text generation

• Advice giving

• Common sense

• …

Neural Networks
for

Natural Language Processing

Before Deep Learning for Natural Language

• NLP research was focused on rule-based approaches for a very long
time

• 1960s: ELIZA

• one of the first conversational systems

• matched keywords and repeated the user

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Before Deep Learning for Natural Language

• My existential discussion with ELIZA last night:

Deep Learning for Natural Language

• NLP research was focused on rule-based approaches for a very long
time

• 1960s: ELIZA

• one of the first conversational systems

• matched keywords and repeated the user

…

• Rapid increase in the amount of available digital text and
computational power has made deep learning a very suitable tool for
natural language processing

• Today, almost all systems that process human language have a
machine learning component and learn from large amounts of data

Machine Learning

• Arthur Samuel (1959): Machine Learning is the field of study that
gives the computer the ability to learn without being explicitly
programmed.

• Instead, we show the computer a lot of examples of the desired
output for different inputs.

Machine Learning

• The goal is to learning a parametrized function
• The parametrized function can have various shapes:

• Logistic Regression

• Support Vector Machines

• Decision Trees

• Neural Networks

• Inputs and outputs can be many different things:

• Text

• Image

• Integer

• y ∈ ℝm

• …

• Text

• Image

• Integer

• y ∈ ℝn

• …

To

Machine Learning

• The goal is to learning a parametrized function
• The parametrized function can have various shapes:

• Logistic Regression

• Support Vector Machines

• Decision Trees

• Neural Networks

• Inputs and outputs can be many different things:

• Text

• Image

• Integer

• y ∈ ℝm

• …

• Text

• Image

• Integer

• y ∈ ℝn

• …

To

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

𝑔(𝑊1𝑥 + 𝑏1)

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

𝑔(𝑊1𝑥 + 𝑏1)

ℎ1

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1 ℎ2

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1 ℎ2

𝑔(𝑊3ℎ2 + 𝑏3)

input

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥 ො𝑦

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1 ℎ2

𝑔(𝑊3ℎ2 + 𝑏3)

input model
prediction

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥 ො𝑦

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1 ℎ2

𝑔(𝑊3ℎ2 + 𝑏3)

𝑦

input model
prediction

gold
label

Deep Learning

• The parametrized function is a combination of smaller functions

• Example: Feedforward Neural Network

• An input vector 𝑥 goes to output vector 𝑦 using a combination of
functions of the form output = 𝑔(𝑊 × 𝑖𝑛𝑝𝑢𝑡 + 𝑏)

• 𝑔 . makes things nonlinear

𝑥 ො𝑦

𝑔(𝑊1𝑥 + 𝑏1) 𝑔(𝑊2ℎ1 + 𝑏2)

ℎ1 ℎ2

𝑔(𝑊3ℎ2 + 𝑏3)

𝑦

input model
prediction

gold
label

𝐽(𝜃)

loss

Loss Function and Gradient Descent

• Calculate gradient of loss with respect to parameters

• Iteratively update parameters to minimize loss

Loss Function and Gradient Descent

• Calculate gradient of loss with respect to parameters

• Iteratively update parameters to minimize loss

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼∇𝜃𝐽(𝜃)

𝐽(𝜃)

𝜃

Text
Representation

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

Show me restaurants around here

0/1

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

Show me restaurants around here

0/1

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

Show me restaurants around here

0/1

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

Show me restaurants around here

0/1

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

Show me restaurants around here

0/1

Word Representation: One-Hot Vectors

• We have a calculus for functions that are from 𝑅𝑛 to 𝑅𝑚

• So we have to convert everything to vectors

• Consider the simple task of domain detection: 0 means is
restaurants skill, 1 means everything else

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

Show me restaurants around here

0/1
Define 𝐽(𝜃)

Sequence Representation: Recurrent Neural Networks

• ℎ𝑡 , 𝑜𝑡 = 𝑅𝑁𝑁(𝑥𝑡 , ℎ𝑡−1; 𝜃)

• 𝜃 is the learned parameters

• Various types of cells:

• Gated Recurrent Unit (GRU)

• Long Short-Term Memory (LSTM)
RNNℎ𝑡−1

𝑥𝑡

𝑜𝑡

ℎ𝑡

input

previous
state

next
state

output

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

Show me restaurants around here

0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

Show me restaurants around here

RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

Define 𝐽(𝜃)

Encode Sequences

• Recurrent: repeat the same box, with the same 𝜃 for each word in the
sequence

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

“Encodes” the input sentence
into a fixed-size vector

Define 𝐽(𝜃)

Encode Sequences
• It can be Bi-directional

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

Encode Sequences
• It can be Bi-directional

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

RNNRNN RNN RNN RNN

Encode Sequences
• It can be Bi-directional

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

RNNRNN RNN RNN RNN

Encode Sequences
• It can be Bi-directional

RNN

Show me restaurants around here

RNN RNN RNN RNN 0/1

RNNRNN RNN RNN RNN

Encoder

Show me restaurants around here

Encoder

Converts a sequence of inputs to one or more fixed size vectors

Encoder

Show me restaurants around here

Encoder

Converts a sequence of inputs to one or more fixed size vectors

Decoder

Receives a fixed size vector and produces probability distributions over
words, i.e. vectors of size |𝑉| whose elements sum to 1

Decoder

Quiz

In both assignments, the goal was to build a system that can convert
natural sentences to their corresponding ThingTalk programs.

In HW2, you trained a semantic parser for this task.

Do you think you used one-hot encoding for word representations?
Why or Why not?

Quiz

In both assignments, the goal was to build a system that can convert
natural sentences to their corresponding ThingTalk programs.

In HW2, you trained a semantic parser for this task.

Do you think you used one-hot encoding for word representations?
Why or Why not?

No. Just to name a few limitations of one-hot encoding:

Large size of input would result in inefficient computations.

Words with similar meanings would have nothing in common.

The Effect of Better Embeddings

• During training, neural networks learn to map regions of the input space
to specific outputs

• If word embeddings map similar words to similar regions, the neural
network will have an easier job

x

x

x

x

Input space
restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

The Effect of Better Embeddings

• During training, neural networks learn to map regions of the input space
to specific outputs

• If word embeddings map similar words to similar regions, the neural
network will have an easier job

x

x

x

x

Input space

These sentences are in the restaurants domain

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

The Effect of Better Embeddings

• During training, neural networks learn to map regions of the input space
to specific outputs

• If word embeddings map similar words to similar regions, the neural
network will have an easier job

x

x

x

x

Input space

These sentences are in the restaurants domain

restaurant = [1 0 0 … 0]
diner = [0 1 0 … 0]
…

These are in the hotels domain

Word Representation: Dense Vectors

• Also called Distributed Representation

• In practice, ~100-1000 dimensional vectors (much smaller than |𝑉|)

• Learned from large text corpora

Word Representation: Dense Vectors

• Also called Distributed Representation

• In practice, ~100-1000 dimensional vectors (much smaller than |𝑉|)

• Learned from large text corpora

I went to this amazing restaurant last night.
We were at the diner when we saw him.

Ali went to the movies.
She was at the movies.

…

Word Representation: Dense Vectors

• Also called Distributed Representation

• In practice, ~100-1000 dimensional vectors (much smaller than |𝑉|)

• Learned from large text corpora

I went to this amazing restaurant last night.
We were at the diner when we saw him.

Ali went to the movies.
She was at the movies.

…

Learn embeddings that maximize our ability to predict the surrounding words of a
word

𝐽 𝜃 = −
1

𝑇
෍

𝑡=1

𝑇

෍

𝑗=−𝑚

+𝑚

log 𝑃(𝑤𝑡+𝑗|𝑤𝑡 ; 𝜃)

Word Representation: Dense Vectors

Images from GloVe: Global Vectors for Word Representation (2014)

Word Representation: Dense Vectors

Images from GloVe: Global Vectors for Word Representation (2014)

There exists a 300-dimensional
vector 𝑧 such that if you add it

to the vector of a city name,
you get the vector of their zip

codes!

Word Representation: Dense Vectors

• We have one vector 𝑣 for each word 𝑤.

• 𝑑 has to encode all aspects and meanings of 𝑤

• These two sentences will be almost identical in terms of word
embeddings.

How much does a share of Apple cost?

How much does a pound of apple cost?

• We can do better

Language Modeling

• The task of estimating the probability of a sequence of words

𝑃 𝑤1𝑤2𝑤3…𝑤𝑚

• Usually requires simplifying assumptions

𝑃 𝑤1 𝑤2 𝑤3…𝑤𝑚 =ෑ

𝑖=1

𝑚

𝑃(𝑤𝑖|𝑤1…𝑤𝑖−1)

≈

ෑ

𝑖=1

𝑚

𝑃(𝑤𝑖|𝑤𝑖−𝑛 …𝑤𝑖−1)

Autoregressive Language Models

• Autoregressive: predict the next word

Autoregressive Language Models

• Autoregressive: predict the next word

Show me restaurants around here

Encoder

Autoregressive Language Models

• Autoregressive: predict the next word

Show me restaurants around here

Encoder

P(. | show)

Autoregressive Language Models

• Autoregressive: predict the next word

Show me restaurants around here

Encoder

P(. | show) P(. | show me)

Autoregressive Language Models

• Autoregressive: predict the next word

Show me restaurants around here

Encoder

P(. | show) P(. | show me) …

Masked Language Models

• Masked: fill in the blank

Masked Language Models

• Masked: fill in the blank

Show me _ around here

(Bidirectional) Encoder

Masked Language Models

• Masked: fill in the blank

Show me _ around here

(Bidirectional) Encoder

P(. | show me _ around here)

Word Representation: Contextual

Word Representation: Contextual

• Training data for a task is limited

• Pre-train a language model on a very large text corpus

• Embeddings from Language Models: ELMo (Oct. 2017)

• Generative Pre-training: GPT (June 2018)

• Bidirectional Encoder Representations from
Transformers: BERT (Oct. 2018)

• GPT-2 (Feb. 2019)

• ...

Word Representation: Contextual

• Training data for a task is limited

• Pre-train a language model on a very large text corpus

• Embeddings from Language Models: ELMo (Oct. 2017)

• Generative Pre-training: GPT (June 2018)

• Bidirectional Encoder Representations from
Transformers: BERT (Oct. 2018)

• GPT-2 (Feb. 2019)

• ...

corpus size

800 million words

1x

4x

48x

Quiz

A language model is trained to be good at predicting missing words.

How can we test if the contextual representations learned by the
language model are good at capturing the meaning of sentences as

well?

Quiz

A language model is trained to be good at predicting missing words.

How can we test if the contextual representations learned by the
language model are good at capturing the meaning of sentences as

well?

1. By evaluating them on downstream tasks. BERT for instance
improved state of the art results for several NLP tasks by 4-8%.

2. By looking at the representations themselves.

Sequence
to

Sequence

When Both Input and Output Are Sequences of Words

When Both Input and Output Are Sequences of Words

• Seq2Seq has many use cases

• Machine Translation

• Question Generation

• Semantic Parsing

• We will use examples from semantic parsing

When Both Input and Output Are Sequences of Words

• Seq2Seq has many use cases

• Machine Translation

• Question Generation

• Semantic Parsing

• We will use examples from semantic parsing

Show me restaurants around here
now => @QA.Restaurant()

, geo == current_location => notify

Sequence to Sequence

• Dataset: pairs of source sentence 𝑥1𝑥2…𝑥𝑠 and target sentence
𝑦1𝑦2…𝑦𝑡

• For instance, pairs of natural sentences and their ThingTalk programs

• The objective is to learn 𝜃 that maximizes:

𝐽 𝜃 = 𝑃 𝑦1 𝑦2…𝑦𝑡 𝑥1 𝑥2…𝑥𝑠 ; 𝜃)
=

𝑃(𝑦1 𝑥1𝑥2…𝑥𝑠 ; 𝜃 × 𝑃 𝑦2 𝑦1𝑥1𝑥2…𝑥𝑠 ; 𝜃 × ⋯

Encoder-Decoder

We can use encoder-decoder models for Seq2Seq tasks

Encoder

Show me restaurants around here

Encoder-Decoder

We can use encoder-decoder models for Seq2Seq tasks

Encoder

now => @QA.Restaurant() , geo == …

Show me restaurants around here

Decoder

Encoder-Decoder

In practice, we also input the previous token to the decoder

now => @QA.Restaurant() , …

Encoder

Show me restaurants around here

Decoder

<start> now => @QA.Restaurant()

Encoder-Decoder

At training time, decoder always gets the gold target as input

Encoder Decoder

Encoder-Decoder

At training time, decoder always gets the gold target as input

Encoder

Show me restaurants around here

Decoder

Encoder-Decoder

At training time, decoder always gets the gold target as input

Encoder

Show me restaurants around here

Decoder

<start> now => @QA.Restaurant()

Encoder-Decoder

At training time, decoder always gets the gold target as input

Encoder

now => @QA.Restaurant() , …

Show me restaurants around here

Decoder

<start> now => @QA.Restaurant()

Encoder-Decoder

At training time, decoder always gets the gold target as input

Encoder

now => @QA.Restaurant() , …

Show me restaurants around here

Decoder

<start> now => @QA.Restaurant()

These vectors define a distribution over
all possible words. We define 𝐽(𝜃) based

on the probability of the correct word

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder Decoder

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

Show me restaurants around here

Decoder

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

Show me restaurants around here

Decoder

<start>

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

=>

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

=>

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

=> @QA.Restaurant()

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

=> @QA.Restaurant()

Encoder-Decoder

• At generation time, we feed in the word generated by the decoder at
previous time step.

• Pro: very fast to converge in practice

• Con: model is never exposed to its own search errors during training

Encoder

now

Show me restaurants around here

Decoder

<start>

=> @QA.Restaurant() , …

From Word Probabilities to Output Sequence

• Greedy decoding: at each step, pick the most probable word

• Greedy decoding can make search errors: if we choose a wrong word at a step,
we might never recover

• Beam Search: at each step, keep the K most probable observed outputs

• Sampling: pick a word at random according to the distribution

• …

Downside of Word-Level Loss

Source: Show me restaurants around here.

Gold target: now => @QA.Restaurant() , geo == current_location => notify

Model output: now => @QA.Hospital() , geo == current_location => notify

Most of the sentence is the same as the gold, so low cost, but you will –literally-
end up in a hospital!

A small difference in words is not the same as a small difference in meaning.

Downside of Word-Level Loss

Source: Show me nearby restaurants.

Gold target: mostrami ristoranti nelle vicinanze

Model output: sto cercando un ristorante qui attorno

(I’m looking for a restaurant around here)

Most of the sentence is different from the gold, so high cost, but the answer is correct.

Difference in words is not the same as difference in meaning.

Quiz

Is this a problem in semantic
parsing as well?

Quiz

Is this a problem in semantic
parsing as well?

Not for ThingTalk. ThingTalk is normalized, that
is, each meaning has exactly one ThingTalk

code.

Attention

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

• Some words are more important than others

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

• Some words are more important than others

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

How far away is the closest Italian
restaurant to me?

now => [distance] of (compute distance …

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

• Some words are more important than others

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

How far away is the closest Italian
restaurant to me?

now => [distance] of (compute distance …

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

• Some words are more important than others

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

How far away is the closest Italian
restaurant to me?

now => [distance] of (compute distance …

Capturing Long Term Dependencies is Important in NL

• When generating a word, the model has to look at multiple words that
are potentially far from each other.

• Some words are more important than others

Alice is young, lively and beautiful Alice è giovane, vivace e

bello

bella

How far away is the closest Italian
restaurant to me?

now => [distance] of (compute distance …

Attention

• Designed to alleviate this exact problem

• At each decoding step, compute attention scores by combining
encoder and decoder states

• Normalize scores with softmax

• Mix them into a context vector

• Mix decoder state and context vector

Encoder-Decoder with Attention

When generating a word for the output, directly look at all the words in
the input

Encoder

Show me restaurants around here

Decoder

<start>

Encoder-Decoder with Attention

When generating a word for the output, directly look at all the words in
the input

Encoder

Show me restaurants around here

Decoder

<start>

Transformer

• Is a relatively new class of parametrized functions

• Instead of RNNs, is entirely made up of attentions

• Attentions are easy to compute in parallel, which is especially beneficial
when using GPUs

• Empirically, Transformer outperforms RNN in a wide range of tasks and
datasets.

• Has encoder, decoder and Seq2Seq variants.

Remember This Image from Lecture 1?

Remember This Image from Lecture 1?

Remember This Image from Lecture 1?

Remember This Image from Lecture 1?

contextual word
embeddings

Remember This Image from Lecture 1?

contextual word
embeddings

Remember This Image from Lecture 1?

contextual word
embeddings

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

encoder-
decoder with
attention

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

encoder-
decoder with
attention

a sequence
of vectors

Remember This Image from Lecture 1?

contextual word
embeddings

a sequence
of vectors

encoder-
decoder with
attention

a sequence
of vectors

Practical Notes

• Python

• PyTorch

• Genie NLP

• HuggingFace’s transformers package includes state-of-the-art pre-trained

language models like BERT

